Search results for " COMPUTATION"

showing 10 items of 1478 documents

A Viscoelastic Model for the Long-Term Deflection of Segmental Prestressed Box Girders

2017

Most of segmental prestressed concrete box girders exhibit excessive multidecade deflections unforeseeable by past and current design codes. To investigate such a behavior, mainly caused by creep and shrinkage phenomena, an effective finite element (FE) formulation is presented in this article. This formulation is developed by invoking the stationarity of an energetic principle for linear viscoelastic problems and relies on the Bazant creep constitutive law. A case study representative of segmental prestressed concrete box girders susceptible to creep is also analyzed in the article, that is, the Colle Isarco viaduct. Its FE model, based on the aforementioned energetic formulation, was succ…

TAComputational Theory and MathematicsCivil and Structural Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Computer Graphics and Computer-Aided Design; Computational Theory and MathematicsComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Graphics and Computer-Aided DesignCivil and Structural Engineering
researchProduct

The Average State Complexity of the Star of a Finite Set of Words Is Linear

2008

We prove that, for the uniform distribution over all sets Xof m(that is a fixed integer) non-empty words whose sum of lengths is n, $\mathcal{D}_X$, one of the usual deterministic automata recognizing X*, has on average $\mathcal{O}(n)$ states and that the average state complexity of X*is i¾?(n). We also show that the average time complexity of the computation of the automaton $\mathcal{D}_X$ is $\mathcal{O}(n\log n)$, when the alphabet is of size at least three.

Uniform distribution (continuous)ComputationStar (game theory)0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesCombinatoricsInteger0202 electrical engineering electronic engineering information engineeringTime complexityFinite setMathematicsstar operationDiscrete mathematicsaverage case analysistate complexity16. Peace & justiceBinary logarithm[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]automatonState complexity010201 computation theory & mathematicsfinite language020201 artificial intelligence & image processingComputer Science::Formal Languages and Automata Theory
researchProduct

A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms

2017

Abstract The realification of the ( 2 n + 1 ) -dimensional complex Heisenberg Lie algebra is a ( 4 n + 2 ) -dimensional real nilpotent Lie algebra with a 2-dimensional commutator ideal coinciding with the centre, and admitting the compact algebra sp ( n ) of derivations. We investigate, in general, whether a real nilpotent Lie algebra with 2-dimensional commutator ideal coinciding with the centre admits a compact Lie algebra of derivations. This also gives us the occasion to revisit a series of classic results, with the expressed aim of attracting the interest of a broader audience.

Discrete mathematicsPure mathematicsOscillator algebra010102 general mathematicsUniversal enveloping algebra010103 numerical & computational mathematics01 natural sciencesAffine Lie algebraLie conformal algebraGraded Lie algebraNilpotent Lie algebraComputational Theory and MathematicsLie algebraCompact Lie algebraSettore MAT/03 - GeometriaGeometry and Topology0101 mathematicsCompact derivationGeneralized Kac–Moody algebraAnalysisMathematicsDifferential Geometry and its Applications
researchProduct

Text Compression Using Antidictionaries

1999

International audience; We give a new text compression scheme based on Forbidden Words ("antidictionary"). We prove that our algorithms attain the entropy for balanced binary sources. They run in linear time. Moreover, one of the main advantages of this approach is that it produces very fast decompressors. A second advantage is a synchronization property that is helpful to search compressed data and allows parallel compression. Our algorithms can also be presented as "compilers" that create compressors dedicated to any previously fixed source. The techniques used in this paper are from Information Theory and Finite Automata.

Theoretical computer scienceFinite-state machineComputer science[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]010102 general mathematicsforbidden wordData_CODINGANDINFORMATIONTHEORY0102 computer and information sciencesInformation theory01 natural sciencesfinite automatonParallel compressionpattern matching010201 computation theory & mathematicsEntropy (information theory)Pattern matching0101 mathematicsTime complexityAlgorithmdata compressioninformation theoryData compression
researchProduct

The promise of spintronics for unconventional computing

2021

Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/o…

Computer scienceFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology01 natural sciencesQuantum nonlocalityAffordable and Clean EnergyBlueprintMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencescond-mat.mes-hallElectronic engineeringHardware_ARITHMETICANDLOGICSTRUCTURESStandby powerApplied Physics010302 applied physicsSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringReservoir computingPhysics - Applied PhysicsMaterials EngineeringPhysik (inkl. Astronomie)Dissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCMOS integrated circuits; Computation theory; Energy dissipation; Green computing; Spin fluctuations; Spintronics; Tunnel junctionsCMOS0210 nano-technologyUnconventional computingphysics.app-ph
researchProduct

Quantum computing thanks to Bianchi groups

2018

It has been shown that the concept of a magic state (in universal quantum computing: uqc) and that of a minimal informationally complete positive operator valued measure: MIC-POVMs (in quantum measurements) are in good agreement when such a magic state is selected in the set of non-stabilizer eigenstates of permutation gates with the Pauli group acting on it [1]. Further work observed that most found low-dimensional MICs may be built from subgroups of the modular group PS L(2, Z) [2] and that this can be understood from the picture of the trefoil knot and related 3-manifolds [3]. Here one concentrates on Bianchi groups PS L(2, O10) (with O10 the integer ring over the imaginary quadratic fie…

Discrete mathematics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]010308 nuclear & particles physicsPhysicsQC1-999010103 numerical & computational mathematics01 natural sciencesRing of integers[SPI.MAT]Engineering Sciences [physics]/MaterialsModular group0103 physical sciencesPauli groupQuadratic field0101 mathematics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsQuantumEigenvalues and eigenvectorsTrefoil knotQuantum computerMathematics
researchProduct

The diamond partial order for strong Rickart rings

2016

The diamond partial order has been first introduced for matrices, and then discussed also in the general context of *-regular rings. We extend this notion to Rickart rings, and state various properties of the diamond order living on the so-called strong Rickart rings. In particular, it is compared with the weak space preorder and the star order; also existence of certain meets and joins under diamond order is discussed.

Algebra and Number TheoryMathematics::Rings and Algebras010102 general mathematicsPreorderOrder (ring theory)JoinsDiamondContext (language use)010103 numerical & computational mathematicsState (functional analysis)engineering.materialStar (graph theory)Space (mathematics)01 natural sciencesCombinatoricsengineering0101 mathematicsMathematicsLinear and Multilinear Algebra
researchProduct

Binary jumbled string matching for highly run-length compressible texts

2012

The Binary Jumbled String Matching problem is defined as: Given a string $s$ over $\{a,b\}$ of length $n$ and a query $(x,y)$, with $x,y$ non-negative integers, decide whether $s$ has a substring $t$ with exactly $x$ $a$'s and $y$ $b$'s. Previous solutions created an index of size O(n) in a pre-processing step, which was then used to answer queries in constant time. The fastest algorithms for construction of this index have running time $O(n^2/\log n)$ [Burcsi et al., FUN 2010; Moosa and Rahman, IPL 2010], or $O(n^2/\log^2 n)$ in the word-RAM model [Moosa and Rahman, JDA 2012]. We propose an index constructed directly from the run-length encoding of $s$. The construction time of our index i…

FOS: Computer and information sciencesString algorithmsStructure (category theory)Binary numberG.2.1Data_CODINGANDINFORMATIONTHEORY0102 computer and information sciences02 engineering and technologyString searching algorithm01 natural sciencesComputer Science - Information RetrievalTheoretical Computer ScienceCombinatoricsdata structuresSimple (abstract algebra)Computer Science - Data Structures and AlgorithmsString algorithms; jumbled pattern matching; prefix normal form; data structures0202 electrical engineering electronic engineering information engineeringParikh vectorData Structures and Algorithms (cs.DS)Run-length encodingMathematics68W32 68P05 68P20String (computer science)prefix normal formSubstringComputer Science Applicationsjumbled pattern matching010201 computation theory & mathematicsData structureSignal ProcessingRun-length encoding020201 artificial intelligence & image processingConstant (mathematics)Information Retrieval (cs.IR)Information SystemsInformation Processing Letters
researchProduct

Nondeterministic operations on finite relational structures

1998

Abstract This article builds on a tutorial introduction to universal algebra for language theory (Courcelle, Theoret. Comput. Sci. 163 (1996) 1–54) and extends it in two directions. First, nondeterministic operations are considered, i.e., operations which give a set of results instead of a single one. Most of their properties concerning recognizability and equational definability carry over from the ordinary case with minor modifications. Second, inductive sets of evaluations are studied in greater detail. It seems that they are handled most naturally in the framework presented here. We consider the analogues of top-down and bottom-up tree transducers. Again, most of their closure propertie…

Discrete mathematicsFinite-state machineGeneral Computer ScienceComputer scienceLogicFormal languages (recognizable and context-free sets transducers)Unbounded nondeterminismMonad (functional programming)Symbolic computationHypergraphsFirst-order logicLogical theoryDecidabilityTheoretical Computer ScienceNondeterministic algorithmAlgebraDeterministic automatonFormal languageUniversal algebraEquivalence relationTree transducersRewritingComputer Science(all)Theoretical Computer Science
researchProduct

Avoiding strange attractors in efficient parametric families of iterative methods for solving nonlinear problems

2019

[EN] Searching zeros of nonlinear functions often employs iterative procedures. In this paper, we construct several families of iterative methods with memory from one without memory, that is, we have increased the order of convergence without adding new functional evaluations. The main aim of this manuscript yields in the advantage that the use of real multidimensional dynamics gives us to decide among the different classes designed and, afterwards, to select its most stable members. Moreover, we have found some elements of the family whose behavior includes strange attractors of different kinds that must be avoided in practice. In this sense, Feigenbaum diagrams have resulted an extremely …

Feigenbaum diagramsNumerical AnalysisMathematical optimizationRelation (database)Iterative methodApplied MathematicsNonlinear problems010103 numerical & computational mathematicsConstruct (python library)01 natural sciencesComputational efficiency010101 applied mathematicsComputational MathematicsNonlinear systemRate of convergenceAttractorIterative methods with and without memoryNumerical tests0101 mathematicsMATEMATICA APLICADAQualitative analysisMathematicsParametric statisticsApplied Numerical Mathematics
researchProduct